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The nature of the interconnect ion of the the rmocap i l l a ry  mechanism of convective instabili ty 
and the magnet ic  mechanism of sur face  instabili ty is investigated as a function of the hea t -  
t r a n s f e r  conditions and the cha rac t e r i s t i c  of the adjoining media.  

The the rmocap i l l a ry  stabil i ty of a l aye r  of magnetizable liquid was studied in [1, 2] for  heat t r an s f e r  at 
the f ree  surface  descr ibed  by Newton's  law. Above the plane upper  boundary of the l aye r  was a nonmagnetic 
gas of negligible density and viscosi ty .  In this formulat ion the problem is considerably simplif ied since it is 
not n e c e s s a r y  to solve the hydrodynamic and heat  equations in the gas. 

In p rac t i ce  the layer  of magnetizable liquid is often bounded by a l ayer  of liquid which does not mix with 
it. In such a case it is c lea r ly  nece s sa ry  to consider  the dynamics of both media.  In this connection we in-  
vest igate  below the stabil i ty of a hor izontal  l ayer  of nonisothermal  magnetizable liquid bounded below (z = - l )  
by a plane surface  separa t ing  it f r om a so l idnonmagne t ic  body, and above (z = 0) by a plane surface  separat ing 
it f rom an infinite mass  of immiscible  liquid which is also magnetizable.  

The whole sys tem is in a gravitat ional  field d i rec ted  ver t ica l ly  downward and a uniform magnetic f ield 
t r a n s v e r s e  to the layer .  In addition, a t empe ra tu r e  distr ibution with a constant ve r t i ca l  gradient  is maintained 
in the l ayer .  The z axis of a Car tes ian  coordinate sys tem is d i rec ted  ver t ica l ly  upward t r an sv e r se  to the l aye r ,  
and the x and y axes are  along the layer .  We consider  the interact ion of the the rmocap i l l a ry  mechanism of 
convective instabil i ty with the magnet ic  mechanism of surface  instabili ty and neglect  all o ther  mechanisms of 
convective instabil i ty (gravitational and magnetic) in compar ison with the the rmocap i l l a ry  mechanism.  This  
is valid,  in pa r t i cu la r ,  fo r  sufficiently thin l ay e r s ,  and is mathemat ica l ly  equivalent to the l imit  K = 0, ~ = 0. 

By using the resu l t s  of [1, 2] it is easy  to wri te  down the l inear ized the rmomechan ica l  equations fo r  a 
magnet izable liquid and the boundary conditions for  smal l  normal  per turba t ions  ~exp (ikr) descr ibing the ~e 
problem posed. The magnetizat ion of the liquid va r i e s  l inear ly  with the magnetic  f ield intensity M = xH, ~ = 
~* - a ( T - T * ) .  In this case the potentials  of the magnet ic  field per turbat ions  in all th ree  media sat isfy 
Laplace '  s equation 

A r  ( i = l ,  2, 3), (1} 

where  the subscr ip t  3 r e f e r s  to the solid nonmagnetic body (z < - l ) ,  2 to the upper  semiinfinite mass i f  of 
magnet ic  liquid (z > 0), and 1 to the l aye r  ( - l  < z < 0). 

Since we neglect  the t empera tu re  dependence of the magnet izat ion,  the per turba t ions  of the magnet ic  
field are  re la ted  to the velocity and t empera tu re  per turba t ions  only through the boundary conditions at the 
f ree  surface  [1, 2]. T h e r e f o r e ,  it is expedient  to simplify the boundary-value problem by el~ninat ing the 
potentials  of the magnet ic  field per turbat ions  ~i. By solving (1) and sat isfying the boundary condtions we 
find 

(I) i 

(MI-  M2) F [ 

02 = C2 exp (--kz) exp (ikr), 

l~h "~iththklkl sh kz ~ ch kz 1 exp (ikr) 

1 ~- ~ i ( l  + ~fhk/ )  
P2 (~t + th kl) 

(I)a = Cs exp (kz) e• (ikr). 

, ( 2 }  

By el iminat ing the ~i ,  the p r e s s u r e ,  and the longitudinal velocity components f rom the the rmomechan-  
ical  equations for  the magnetizable liquid and the boundary condit ions,  we obtain the d imensionless  fo rm of 
the initial boundary-value p rob lem:  
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(dz/dz" _ hay v~ = 0, (d~/dz " - -  ~ v~ = 0, 

(d~/dz ~ - -  ~)  T~ + v~ = 0, (dZ/dz ~ - -  k ~) 7"2 + (yzu~/u t~ = 0, 

(3) 

(4) 

a t z  = - I  

vi = dv, ldz = O, a) T~ = 0, b) dTl ldz  = O, (5) 

a t z = 0  

T,  - -  F = 7"2 - -  ( ~ / ~ )  F, dT , /dz  -= (s (7) 

~v~/dz  2 - -  Oldn,)  a'~'v~ICl: 2 = - -  bla k 2 (T~ - -  F), (8) 

C Bo (dS/d~ - -  31~d/dz) (v~-- "~.v.zlvh) = k"-F (Bo + k 2 - -  kqD Si |/B-0-'), (9) 

Y~.~ ---- ~'2~, ~ ~ p-z/If + p~ 0q + t hk ) / tq  (I + ~ thk)], 

where F is the perturbation of the free surface. 

In going to dimensionless quantities the following scales were used: length, layer thickness l; tempera- 
ture, Ti/; veloclW, >tl/l. 

The parameters characterizing the problem posed have the following form: the Bond number Bo = {Pl - 
p2)gl2/a, the Marangoni number Ma = o~ll2/I}ly~i, the gravitational number C = TIl~d/(p I -- p2)gZ 3, the coupling 
parameters k~Ai, ~/ql, ~/n2, the relative magnetic permeabilities of the layer and the upper massif ~i and 
/~2; Si =/~o(Ml - M2)2~4(pl - p2)g~ is the surface instability number of the magnetizable liquid. 

The boundary conditions at the free surface were obtained by using the continuity conditions for velocity: 
temperature, heat flux, tangential component of the magnetic field intensity and the normal component of the 
magnetic induction, and also the conditions for the normal and tangential stresses. 

The boundary conditions for the temperature (5) correspond to the following: a) the temperature is speci- 
fied on the lower plane (its perturbation vanishes); b) a constant heat flux is specified (the heat flux related to 
the temperature perturbation vanishes). Henceforth, all expressions denoted by the letters a and b corre- 
spond to one of the two forms of conditions for the temperature at the solid boundary (z = -1). 

We investigate the stability of equilibrium for monotonic perturbations only. 

The solution of problem (3)-(9) can be obtained in the usual way, and leads to the following limits of 
s tab i l i ty :  

8h a s h k c h k - - k +  - -~(sh  ~ k - k  ~) c h k +  
a )  Ma = - ~ 

8k~ C V'~0-  (sh k + ch k) [ ] ,  (10) 
1 / ~ - -  k + sh~k--k~chk-- • (sh~k--~) shk 

+ i/B-b---- Si ~ 

( ~ I 8k~Cv 'B-0- ( shk+chk)  + 
b) M a = {  8 k 2 [ s h k c h k - - k +  ~1--2 (sh 'k--k2)  s h k +  ~-~-chk}~ i V ~ -  . k _ ~  SiqD 

]}-' + [ sh 2 k ch k + / ~  ch k - -  2k sh k __ ~• (sh ~ k -- /~)  ch k �9 (II) 

Equations (10) and (11) show that the convective (thermocapillary) and surface (magnetic) instability 
mechanisms are interconnected. The nature of this interconnection depends on the deformability of the sur- 
face (parameters Bo and C) and the characteristics of the adjoining media (parameters ~2/~I, h~/kl, ~q/>t2, 

~2, and ~I). 
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F o r  C = 0 the deformat ion  of the sur face  does not affect  the the rmocapf l l a ry  instabili ty mechanism.  In 
this case the the rmocap i l l a ry  and magnet ic  mechanisms  are  not interconnected;  i . e . ,  the instabili ty of the su r -  
face a r i s e s  only f rom the magnet ic  mechan i sm,  as is the case for  an i so thermal  magnetizable liquid, and 
does not lead to the initiation of motion; the convective instabil i ty a r i s e s  only f rom the thermocapi l la ry  mech-  
anism and does not lead to deformat ion of the surface .  

F o r  a be t te r  understanding of the physical  meaning of the intercormection under  study we consider the 
l imit ing cases  of wavelengths which a re  ve ry  shor t  and ve ry  long in compar ison  with the layer  thickness ,  i .e . ,  
k ~ o o  and k ~  0. 

1. Large  Wave Number s ,  k ~ 0% In this case Eqs.  (10) and (11) lead to the same resu l t  - the boundary 
conditions f o r  the t e m p e r a t u r e  on the undeformable  boundary (z = - 1 )  do not affect  the stabil i ty,  

Ma = -- 8k~(l + ~h/lh) (I + ~/Li) 
8k~ C VBo + 1 - -  ~ 

shk V----B-~-o + k ~,+~ 

(12) 

If I - -  • =/== 0 and Si 
i h + ~  ( l /Bo k ) 

, Eq. (12) reduces to the following: 

Ma --" 8kz (I + ~.l~h) (1 + ~lki) (13) 
1 - -  ~i/u2 

Equation (13) ag rees  with the resu l t  obtained in [3] fo r  a l aye r  of o rd inary  liquid; i .e . ,  the deformat ion of the 
sur face  can be neglected for  shor t  wavelength per tu rba t ions ,  and the magnet ic  mechanism of surface instabil i ty 
is in terconnected with the the rmocap i l l a ry  mechanism only ove r  a nar row range of Si values near  the cr i t ica l  
value Si T for  an i so the rmal  liquid. In  addition, as k --* ~ the neutra l  Ma (k) curve  for  Si values fa r  f rom SiT 
depends on the p a r a m e t e r s  ~2/~1, )'2/kl, and n l / x  2 in exact ly the same way as for  an ord inary  liquid [3]. 

2. Small Wave Numbers ,  k ~ 0. This  approximat ion leads to different  r esu l t s  in the two cases  con-  
s idered:  

a) Ma = ~ 80 (1 + kTh/2~h)(1 + k~lXi) _ _  (14) 
kz-- 5• + 120 C 1/B-ff'I[V'B-ff'+ I#/V'ffff'--k Si ~/(1 +~)1' 

80 (1 + k~z/2~h) (k + kz/L,) 
b) Ma = 4k/3--5• 120C v~B-0-/[V'B-ff-+ kZlV-B~-'---k Si ~/(1 +p~)]" (15) 

Equations (14) and (15) can be minimized analytical ly if the following conditions a re  sat isf ied:  

in case  a) 

in case  b) 

~t 2rll •  
k 

~h zz 
12oc VB-~- 

Vg6- _~ k s~m 
k VBo 1 + 

12o CVB-ff- h~ 2rh 4k~ 5k xt (( 
kK'(--~, k<( r12 ' - 3 =-- Vgo-o k si o.z 

k +V~---ff- l +  

As a result  we obtain the fol lowing crit ical  values  of the wave number and Marangoni number: 

a) MaCr= 2 , kc r = Siv' Bo 
3C ~t 2(1 +Ix2) 

2 "2 P-2S t 8x2 ] 
4(1 + PeP 

(16) 
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F ig .  1. Ma c r  a s  a funct ion of  Si f o r  ~ / ~  = ~/AI = 0, C = 0.01 [I) q~/~l = 0; 
I1) q~/~l  = 10] :  1) ~ = 1; 2) q ~ o  = 3. 

Fig. 2. Domain of continuity of kcr(si) curves: I) ~2/7/i = 0; 2) 1; 3) 2; 4) 10. 

2~ 
b) MAC:= Xl kc~ _ Si ~fB-o-~ 

1 Si~.~ 8 ~  
4 (1 § p.~)~ 

(17) 

It is easy to see that for ~/~t 2 = 0 and heating from below, the magnetic mechanism of surface instability 
has a destabilizing effect on the instability of the layer; i.e., as Si is increased, the critical values of Ma de- 
creases to zero for Si = 2(1 + P2)/P2. 

The interconnection of the thermocapillary and magnetic mechanisms for ~r162 > 0 is of a somewhat 
special character, since in this case pure thermocapillary instability is possible for transfer in both direc- 
tions (heating from above or from below). 

3) For arbitrary values of the parameters Eqs. (10) and (11) were analyzed numerically. The parameters 
Pl and P2 were fixed at Pl = 1.5, P2 = 2, and the values of all other parameters were varied. It should be 
emphasized that everywhere it is assumed that the density of the lower liquid Pl is larger than that of the upper 
a2, since otherwise mechanical equilibrium could not exist. 

If ~i/~r = 0 and the medium is heated from above, instability arises from the magnetic mechanism, and 
the thermocapiltary mechanism has a stabilizing effect. For heating from below, instability of the layer can 
arise from both the thermocapillary and magnetic mechanisms, and the interconnection between them becomes 
stronger with increasing values of the gravitational number C. In addition, the layer becomes less stable 
with an increase in the gravitational number; i.e., the critical values of the Marangoni number are decreased. 
For St = 0 the critical values of Ma also decrease with an increase of the Bond number Bo. The nature of the 
MaCr(Si) dependence on: the parameters Bo, C, n,2/Th, and ?,2/k i is more complicated, and will be explained 
in the analysis of the graphs. The dependences of the critical value of the Marangoni number on the surface 
instability number Si for various values of Bo and 7/~/7/I are shown in Fig. 1. All the graphs presented in this 
paper are for an isothermal lower boundary; i.e., they are calculated from Eq. (10). In order to save space 
the results for a thermally insulated boundary are not shown graphically. It is clear from Fig. 1 that the criti- 
cal values of the Marangoni number increase in the ratio ~2/ql; the nature of the MaCr(Si) dependence is 
changed also: the solid curves (q~/qt = 0) are smooth, but the open curves (7/2/q i = 10) have a sharp bend. 
Accordingly, the curves for kcr(si) are continuous or have a discontinuity. In Fig. 2 the ranges of values 
of the parameters Bo and C for which the kcr(si) curves are continuous lie between the open curve and the 
solid curves 1-4. For values of C and Bo which lie outside the curves the kcr(si) curves have a discontinuity. 
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Fig. 3. Cr i t i ca l  MaCr(Si) cu rves  fo r  ~tl/n 2 = 0, ~2/~1 = 1 [I) k 2 / ~  = 0;  

m x~/x~ = i ] ;  i) 4E~ = i ;  2) 3. 

Fig. 4. M a c r a s a f u n c t i o n o f S i f o r C = 0 . 1 ,  v ~ - o = 0 . 1 : I )  ~ l / ~ = l ; I I )  
nl /x2 = 10. 

An ana lys i s  of these  graphs  shows that  as  Y~/~I is i nc reased  the domain of continuity of the ker(si)  cu rves  
( smoothness  of the MaCr(Si) curves)  is na r rowed ,  i .e . ,  the interconnect ion between the t he rmocap i ! l a ry  and 
magnet ic  m e c h a n i s m s  is weakened. 

The e f fec t  of a change of k2/kl on the s tabi l i ty  of the l a y e r  was  invest igated also.  To  do this we con-  
s ide red  the r e su l t s  of a n u m e r i c a l  ana lys i s  of Eq. (10) fo r  fixed ~1/~2, ~2/~1, and C fo r  va r ious  values  of Bo 
and k2/k 1. I t  was  found that as k2/h 1 i n c r e a s e s ,  the c r i t i ca l  value of the Marangoni  number  i nc r ea se s .  The 
l imi t ing  case  k2/k 1 - -  oo indicates  a t rans i t ion  to an i so the rma l  su r face  when the gradient  of the su r face  tension 
vanishes  at  the boundary,  and consequently t h e r m o c a p i l l a r y  instabi l i ty  is imposs ib le ;  Ma c r  approaches  
infinity. In th is  l imi t ing case  the instabi l i ty  of the l aye r  will  be produced by the magne t ic  m e c h a n i s m  of s u r -  
face instabil i ty.  The c r i t i ca l  MaCr(Si) cu rves  a re  shown in Fig.  3 for  va r ious  values  of Bo and k2A 1. 

So f a r  in the numer i ca l  ana lys i s  of Eqs.  (10) and (11), we have l imi ted  ou r se lves  to the case  when the 
t h e r m a l  diffusivity of the lower  fluid can be neglected in compar i son  with that  of the upper  (~i/~t2 = 0). In 
such s i tuat ions the t he rm ocap i l l a ry  instabi l i ty is  r e la ted  to convect ion in the lower  phase  only; the upper  liquid 
is pass ive .  If  the t h e r m a l  diffusivity of the lower  phase  is not negligible in compar i son  with that  of the upper  
(~tl/~t 2 r 0) ,  the t he rm ocap i l l a ry  instabi l i ty is r e la ted  to convection in both lower and upper  phases .  T h e r e -  
fore  instabi l i ty  is poss ib le  even if there  is no magnet ic  field fo r  heat ing both f r o m  below and above. It is 
quite na tura l  that in the case  analyzed (n i /n  2 ~ 0) the deformabi l i ty  of the su r f ace ,  c h a r a c t e r i z e d  by the ' 
p a r a m e t e r  C, will  have a s ignif icant  e f fec t  on the s tabi l i ty ;  with i ts  i nc rease  the l imi t ing  va lues  of the t e m -  
p e r a t u r e  gradients  a r e  d e c r e a s e d  fo r  heat ing f r o m  below and inc reased  fo r  heat ing f r o m  above.  In a m a g n e -  
t ic field the su r face  of a magnet izable  liquid becomes  l e s s  s tab le ,  i . e . ,  m o r e  de fo rmed ,  and t he re fo re  the 
dependence of the c r i t i ca l  va lues  of the Marangoni  number  on Si will be s i m i l a r  to the dependence of Ma cr  on 
C, the only d i f ference  being that  fo r  heat ing f r o m  below Ma cr  approaches  ze ro  asympto t icaDy as  C i n c r e a s e s ,  
while Ma c r  d e c r e a s e s  cons iderably  m o r e  sharp ly  with inc reas ing  Si and becomes  ze ro  fo r  Si = Si T. This  is 
r e l a t ed  to the p r e s e n c e  of a magne t ic  m e c h a n i s m  of su r face  ins tabi l i ty  in a magnet izable  liquid. Fo r  heat ing 
f r o m  above the c r i t i ca l  values  of Ma inc rea se  with inc reas ing  C and inc reas ing  Si. These  c h a r a c t e r i s t i c s  
a r e  i l lus t ra ted  by the MaCr(SD curves  shown in Fig. 4. It  is easy  to see  that  the domain of s tabi l i ty  is bounded 
f r o m  above and f r o m  below. 

It  should be noted that  when the hea t  flux vanishes  on the lower  boundary,  the l aye r  under  invest igat ion 
will  be m o r e  unstable  than in the case  analyzed;  n e v e r t h e l e s s ,  the qual i ta t ive re la t ions  es tab l i shed  above will 
hold. 
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N O T A T I O N  

x,  y ,  z a re  the Car tes ian  coordinates ;  
T ,  v a re  the per turba t ions  of t emp e ra tu r e  and z component of veloci ty;  
@ is the potential  of magnet ic  field per turba t ions ;  
M is the magnet izat ion of liquid; 
H is the magnet ic  f ield intensity;  
/~o is the magnet ic  permeabi l i ty  of vacuum; 
X is the magnet ic  suscept ibi l i ty;  

is  the dynamic v iscos i ty ;  
}, is  the t he rma l  conductivity;  
~t is the t he rma l  diffusivity;  
g is the acce le ra t ion  due to gravi ty;  

is the volume coefficient  of expansion; 
K is  the pyromagne t ic  coeff icient ;  
l is the l aye r  th ickness ;  
T is the t empe ra tu r e  gradient;  
k = [kx, ky, 0] is the wave vec to r ;  

is the sur face  tension;  
o" = - ( l t o t # ' ~ T ) /  

~*; ~ is the re la t ive  magnet ic  permeabi l i ty ;  
F is the amplitude of per turba t ions  of f r ee  surface .  
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C O N V E C T I V E  M O T I O N  O F  A C O N D U C T I N G  L I Q U I D  

IN AN E L E C T R O M A G N E T I C  F I E L D ,  T A K I N G  I N T O  

A C C O U N T  F I N I T E  W A L L  T H I C K N E S S  A N D  

T H E R M A L  C O N D U C T I V I T Y  

Vu  Z u i  K u a n g  a n d  N g o  Z u i  K a n  UDC 538.4:536.24 

The effect  of t he t empe ra tu r e -dependen t  e l ec t r i ca l  conductivity of the liquid and the finite wall 
thickness  and the t he rma l  conductivity on stabil i ty is investigated in a l inear  formulat ion.  

In [1] the convect ive instabil i ty of a liquid layer  in a magnet ic  field was invest igated,  taking into account 
the finite wall  thickness and the rma l  conductivity. In the p resen t  work ,  stabil i ty of this type is investigated 
taking account of the t empe ra tu r e  dependence of the e lec t r i ca l  conductivity. 

1.  F o r m u l a t i o n  o f  t h e  P r o b l e m  

Consider  an infinite hor izonta l  l aye r  of e lec t r i ca l ly  conducting liquid of thickness B, the e l ec t r i ca l  con-  
ductivity of which depends l inear ly  on the t empera tu re  ~ = ~0o [ 1 + ~ (T--To~) ] under  the condition that 
la(T--T00)l<<! [2]. The walls  bounding the l aye r  have the same fInite thickness and the rma l  conductivity 
kl. The t e m p e r a t u r e s  at the ex te rna l  su r faces  of the watts  a re  given to be constant ,  but different  (T 1 is the 
t empe r a tu r e  at the lower  wall  and T 2 at the upper  wall). In the y d i rec t ion ,  a constant ex terna l  e l ec t r i c  field 
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